Extensions 1→N→G→Q→1 with N=C42 and Q=D13

Direct product G=N×Q with N=C42 and Q=D13
dρLabelID
C42×D13208C4^2xD13416,92

Semidirect products G=N:Q with N=C42 and Q=D13
extensionφ:Q→Aut NdρLabelID
C421D13 = C42⋊D13φ: D13/C13C2 ⊆ Aut C42208C4^2:1D13416,93
C422D13 = C422D13φ: D13/C13C2 ⊆ Aut C42208C4^2:2D13416,97
C423D13 = D524C4φ: D13/C13C2 ⊆ Aut C421042C4^2:3D13416,12
C424D13 = C4×D52φ: D13/C13C2 ⊆ Aut C42208C4^2:4D13416,94
C425D13 = C4⋊D52φ: D13/C13C2 ⊆ Aut C42208C4^2:5D13416,95
C426D13 = C4.D52φ: D13/C13C2 ⊆ Aut C42208C4^2:6D13416,96

Non-split extensions G=N.Q with N=C42 and Q=D13
extensionφ:Q→Aut NdρLabelID
C42.1D13 = C26.7C42φ: D13/C13C2 ⊆ Aut C42416C4^2.1D13416,10
C42.2D13 = C523C8φ: D13/C13C2 ⊆ Aut C42416C4^2.2D13416,11
C42.3D13 = C4×Dic26φ: D13/C13C2 ⊆ Aut C42416C4^2.3D13416,89
C42.4D13 = C522Q8φ: D13/C13C2 ⊆ Aut C42416C4^2.4D13416,90
C42.5D13 = C52.6Q8φ: D13/C13C2 ⊆ Aut C42416C4^2.5D13416,91
C42.6D13 = C4×C132C8central extension (φ=1)416C4^2.6D13416,9

׿
×
𝔽